#### **Newborn Screening** Laboratory (615) 262-6352 Results and Follow-Up (615) 262-6304 #### I. Introduction Tennessee law requires that a blood sample shall be obtained from each infant born in the state, regardless of age, before discharge from the hospital and tested for specific genetic disorders. These genetic disorders can cause mental retardation or death if not treated quickly. To prevent the early affects of these disorders, the blood sample should be drawn from the infant 24 hours after birth and less than 2 days of life (24-48 hours from birth is the optimum window for sample collection.) Infant's who are screened before they are 24 hours of age must be rescreened within 24 to 48 hours by a local health department, or private physician. Infant's who are born in a non-hospital setting must be taken to a hospital, local health department, or private physician between 24 and 48 hours of birth to have the blood sample collected. Drops of blood from the infant's heel are absorbed into a special filter paper attached to the Newborn Screening Form PH-1582 and sent to the Newborn Screening Laboratory at the Tennessee Department of Health (TDH) Laboratory Services. The current protocol includes testing the blood sample for the following disorders: #### PHENYLKETONURIA (PKU) Infants with PKU lack an enzyme called phenylalanine hydrolase, which is needed to breakdown part of the protein in food. This protein part is called phenylalanine, and unless the condition is detected and treatment is initiated soon after birth, phenylalanine builds up in the blood and body tissues causing mental retardation. Infants are placed on a lifelong special diet low in phenylalanine, which can prevent mental retardation and other effects of PKU. Testing began in 1968 for this disorder, which has an incident rate of 1:12,000 infants. #### **CONGENITAL HYPOTHYROIDISM (TSH)** Hypothyroidism occurs when the body does not produce enough thyroid hormone from the thyroid gland. This hormone is called thyroxine, which is needed for brain and body growth. A decreased amount of thyroxine can interfere with normal growth and can lead to mental retardation. If detected early and hormone replacement is initiated, normal growth and development can take place. Testing began in 1980 for this disorder, which has an incident rate of 1:4,500 infants. #### **HEMOGLOBINOPATHIES** Hemoglobin is the part of red blood cells that carries oxygen. Hemoglobinopathies are diseases that affect the kind or amount of hemoglobin a person has in the red blood cells. Some hemoglobinopathies can cause anemias or thalassemias. Infants of **Asian** or Mediterranean background, such as Italian, Greek, Arab, or Kurdish, should be rescreened for thalassemias at the 12-month routine child-health visit. These specimens can be sent to the Meharry Sickle Cell Center or other laboratory. Sickle cell disease is the most common hemoglobinopathy. The red blood cells are sticky and crescent or sickle-shaped and therefore do not move easily through the vascular system, decreasing the vital levels of oxygen carried throughout the body. There is a dramatic decrease in infant mortality and life-threatening complications when an infant is identified early and treated with antibiotics. Testing began in 1988 and the incidence rate is 1:350 in the Africa-American population. People of Hispanic, Asian, Arabic, or Mediterranean decent are also more likely to have hemoglobinopathies. #### **GALACTOSEMIA (GAL)** Infants with galactosemia lack an enzyme, uridyl transferase, needed to breakdown galactose, a kind of major sugar found in milk. Due to either an absent or low enzyme, galactose accumulates in the body leading to mental retardation, growth deficiency, blindness, overwhelming infection and death. Infants with galactosemia can rapidly become sick after only a few days of normal feeding. Infants who are detected early are placed on a lifelong special galactose-free diet. Testing began in 1992 for this disorder which has an incident rate of 1:60,000 infants. # **CONGENITAL ADRENAL HYPERPLASIA (CAH)** In order for this test to be reported accurately it is imperative that the **CURRENT weight** of the infant be recorded correctly on the Newborn Screening Form. This disorder results from a deficiency in one or another of the enzymes of steroid syntheses. The deficiency results in an abnormal accumulation of hormones important for normal growth and development of puberty. Most affected infants have a second defect that affects normal electrolyte balance. Infants having this deficiency can become very sick within 1 to 2 weeks of birth. Female infants with this disorder may be assigned the wrong sex at birth. Male infants are often not identified until they are in crisis. With early diagnosis and treatment it is possible to achieve normal growth and development of puberty. Because this disorder is complex, infants may need to be monitored by a pediatric endocrinologist. Testing began in 2000 for this disorder and has an incident rate of 1:10,000 to 1:15,000 infants. #### **BIOTINIDASE DEFICIENCY** This disorder is caused by the lack of an enzyme in the baby's body called biotinidase. Babies with Biotinidase Deficiency can have seizures, skin rash, or infection, developmental delays and hearing loss. Problems with the disorder can be prevented with treatment using biotin. Testing began in 2003 for this disorder which has an incident rate of 1:70,000 infants. #### AMINO ACID DISORDERS Amino acid disorders are a group of conditions in which there is a problem with breaking down certain components of food called amino acids. These disorders are caused by a specific defect in one of the many enzymes that perform these tasks. The specific amino acid can build up in the blood and other organs, including the brain. This amino acid and any of its metabolites can cause serious health problems such as mental retardation, damage to vital organs, seizures or coma. The effects of the disorder will vary, and depend on the age at which symptoms occur and the specific amino acid(s) elevated. Treatments vary and may include special dietary intervention, replacement medications, acute illness protocols, and metabolic genetic and nutritional monitoring. #### ORGANIC ACID DISORDERS Organic acid disorders are a group of conditions in which there is a problem with breaking down protein and amino acids in foods. This is due to a specific defect in one of the enzymes that breaks down these substances. These organic acids can build up in blood and urine, and can lead to problems such as low blood sugar, failure to thrive, developmental delays, infections and in rare occasions coma and death. The effects of the disorder will depend on the age at which symptoms occur. Delay in the recognition and treatment may have serious consequences. Treatment may include special dietary intervention, replacement medications, acute illness protocols, and metabolic genetic and nutritional monitoring. #### **FATTY ACID OXIDATION DISORDERS** Fatty Acid Oxidation Disorders are a group of conditions that affect the breakdown of certain fats called fatty acids. A defect in a specific enzyme leads to a build up of fatty acids in the body. When a baby with one of these conditions "fasts" (goes for a long period of time without eating), problems can happen. This occurs because the baby cannot use the energy stored in the fats of the body. This kind of metabolic crisis can sometimes lead to seizures, failure to breathe, cardiac arrest, and death. It is extremely important to identify a child with this disease so that crisis can be prevented. Treatment may include avoiding fasting, replacement medications, monitoring the diet for specific metabolic nutritional requirements and blood levels of certain metabolites. Page IV- 3 # II. Test Methods - Galactosemia testing is performed by enzymatic fluorometric methods. A semi-automated fluorescent test is performed on all borderline and abnormal galactosemia results to detect the uridyl transferase enzyme activity. Enzyme activity is reported as numeric values. - Thyroid testing is performed by a fluoroimmunoassay (FIA) method which detects the amount of thyroid stimulating hormone (TSH) present. - Hemoglobin testing is performed by High Performance Liquid Chromatography (HPLC). - Congenital adrenal hyperplasia employs a fluoroimmunoassay (FIA) methodology, which detects the amount of $17\alpha$ -hydroxyprogesterone ( $17-\alpha$ OHP). - Organic Acid, Fatty Acid and Amino Acid tests are performed by Tandem Mass Spectrometry. These analytes are detected by their mass to charge ratio value. # **III.Specimen Collection** #### A. Collection Form Use the Newborn Screening Collection Form PH-1582. Forms are available from your local county health department. Health departments can order more forms from the Shipping Department of Laboratory Services. (See Page IV - 27 for the TDH REQUISITION FOR LABORATORY SUPPLIES FORM.) The expiration date of the filter paper is printed near the bottom right corner of the form in red ink. It will have the month/year. Forms are good until the last day of the month printed on the form for the year specified. (Example: EXP. 8/2000 means do not use the form after 8/31/00.) Blood collected on forms after the expiration date will be reported out as "*Unsatisfactory Filter Paper Expired*" and another specimen will have to be submitted. ## B. <u>Important Information</u> 1. Infants more than 6 months old The test methods used by the Newborn Screening Laboratory are *not suitable for infants greater than 6 months of age*. If the infant is greater than 6 months of age, contact the Metabolic Center closest to the provider to inquire as to what tests need to be performed and where to send the specimens. 2. Procedures When Infants Are Transfused Prior to the Newborn Screening \* If possible, collect a specimen for the newborn screen **before a transfusion** even if the infant is less than 24 hours of age. The hemoglobin and biotinidase will be accurate, and if it is normal, there is no need for follow-up hemoglobin testing. The PKU, TSH, CAH, Total GAL, FA, OA, Biotinidase, and AA test methodologies and results (i.e. measurement of the metabolite) can be affected by transfusions. Any infant that was transfused within 72 hours prior to specimen collection with any of the following blood products will need to have their screen repeated: Exchange transfusion ECMO procedure Whole blood Plasma GAL, FA, OA, AA and Hemoglobinopathy results can be affected by red blood cell transfusions. Biotinidase, FA, OA, and AA results can be affected by platelet transfusions. \* If an infant has symptoms such as vomiting, diarrhea, dehydration, or jaundice, the newborn screen should be repeated immediately regardless of the number of days that have passed since the transfusion. In addition, the regional metabolic center or endocrinologist (depending on symptoms) should be contacted. **Repeat PKU**, **TSH**, and **CAH** between 4 and 14 days after transfusion. **Repeat GAL and Biotinidase** between 10 and 90 days after transfusion. Collect a specimen for PKU, TSH, CAH, MCAD, OA, FA, AA, and Biotinidase, Homocystinuria, and GAL as soon as possible after the tenth day post transfusion. Send the specimen to the TDH Newborn Screening Laboratory. **Repeat Hemoglobinopathy** at three months post transfusion. Send the specimen to Meharry Sickle Cell Center. See Newborn Screening Section XIII for information about submitting specimens to Meharry Sickle Cell Center. If the infant has been transfused, mark transfusion on the collection form and give the last transfusion date. #### 3. Infants in the NICU and Preemies Sick or premature newborns should have a specimen collected on or near the seventh day of age regardless of feeding status or before transfusion. PKU results are based upon the assumption the infant has had protein feed. Galactosemia results are based on the assumption the infant is on a lactose feeding. If the infant is sick or not feeding well and the physician feels a test is not accurate due to the infant's feed status, the physician is encouraged to obtain a repeat specimen. If an infant is on soy formula, the provider can request an enzyme to be done by writing "DO ENZ" next to the Gal test on the collection form. # C. <u>Instructions for Filling out the Newborn Screening Form PH-1582 (Revised 2/00)</u> It is important to fill in all of the blank lines on the form completely, legibly, and accurately. Use a ballpoint pen to legibly print the information on the form. If critical areas on the form are left blank the Women's Health and Genetics Follow-up Section will have to call to obtain the information. This may cause a delay in reporting results. #### **BACK** | In | fant's Information | |----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | a. | Specimen First ☐ Repeat ☐ | | | If this is the "first" specimen ever collected on the infant, place a mark in the "First" box. If the infant has previously had a newborn screen performed, at any time, then mark the "Repeat" box. | | b. | Previous TDH# | | | If this is a repeat test and the provider or the parent was sent a letter indicating that the specimen should be repeated, write the 11 digit unique TDH number included in the letter in this space. If possible enclose a copy of the letter with the repeat specimen. | | c. | Reason: (_) 24 hr. (_) Unsatisfactory (_) Abnormal (_) Transfused | | | If this is a repeat test and the provider or the parent was sent a letter indicating that the specimen should be repeated, a reason would be given on the letter. | | | If the first specimen was collected before the infant was 24 hours of age and this is why the repeat is being done, mark (X) 24 hr. If the specimen was unsatisfactory for any reason and this is why the repeat is being done, mark (X) Unsatisfactory. If the specimen had an abnormal test result and this is why the repeat is being done, mark (X) Abnormal. If the specimen was collected after the infant was transfused and this is why the repeat is being done, mark (X) Transfused. | | d. | TEST: ( PKU) ( TSH) (HGB) (GAL) (CAH) | | | If you marked the "Reason" as <24, place a mark next to the following test names: PKU, TSH, GAL, and CAH. If the reason was Unsatisfactory, place a mark next to the following test names: | PKU, TSH, HGB, GAL, and CAH. If the reason was Abnormal, place a mark next to the name of the test that was reported as Abnormal. If the reason was Transfused, place a mark next to the name of the test that was reported as transfused. See information regarding transfusions on Page IV - If the specimen is marked as a "First" specimen all test are automatically If the physician or healthcare provider has requested an Enzyme on the Galactose, write in the (\_\_GAL) blank "DO ENZ". Example: (DO ENZ GAL). 1. # e. Infant's Last Name: Legibly print the infant's last name. #### f. Infant's First Name: If the infant has a first name, print it legibly here. If the infant does not have a first name at the time of collection and it was a single birth, write "BOY" for the first name if it's a male infant or "GIRL" for the first name if it is a female infant. If there are multiple births also indicate the birth order by using A, B, C, etc. EXAMPLE: GIRL "A", BOY "B", GIRL "C", BOY "D". #### g. Previous Last Name: If the infant has had a change in their last name, legibly print their previous last name here. *This is very important!* Without this information we are unable to identify when an infant has had a repeat specimen collected. #### h. Birth Date: The day the infant was born. Write the date as MM / DD / YY. The date should be the same day as recorded on the infant's birth certificate. #### i. Time of Birth: The time the infant was born in military time. (See Page IV - 23 for a MILITARY TIME CONVERSION CHART.) Example: Write 3:00 AM as 0300 and 3:00 PM as 1500. The use of strict military time will indicate AM or PM. The time should be the same time as recorded on the infant's birth certificate. #### i. Date Collected: This is the date the specimen was collected. Write the date as MM / DD / YY. # k. Time Collected: The time the specimen was collected in military time. (See Page IV - 23 for a MILITARY TIME CONVERSION CHART.) Example: Write 6:00 AM as 0600 and 6:00 PM as 1800. The use of strict military time will indicate AM or PM. #### I. Birth Status: If the infant was a single birth, mark $(\underline{X})$ 1. Single Birth. If the infants were twins mark $(\underline{X})$ 2. Twin, and mark either ( ) A for the first born or ( ) B for the second born. If the delivery is triplets (or more), mark $(\underline{X})$ 3. Other, followed by the number and letter to indicate the birth order. Example: Triplets would be written as 3A, 3B, and 3C. Quadruplets would be written as 4A, 4B, 4C, and 4D. # m. Hospital of Birth and Hospital Collected: THE REPORT WILL BE MAILED TO THE HOSPITAL OF COLLECTION. Enter the seven-digit hospital code that indicates the location of the infant's birth and the collection hospital. The hospital code is available from the hospital of birth. This blank must be completed regardless of the provider. Private physicians and county health departments must also give the code for the hospital of birth on each specimen submitted to the TDH Laboratory. If the infant has been transferred, the hospital of collection may be different from the hospital of birth. Make sure you have the correct codes for both hospitals. If the infant was not born in a Tennessee hospital, indicate the location by giving the name and location of the hospital of birth. If the infant was not born in a hospital, enter the two-digit code for the county and record "HOME" in hospital block as shown. See Page IV-24 for a COUNTY CODE LIST FOR TENNESSEE. (For example Shelby County - Home Birth - |7|9| |H|O|M|E|.) #### n. Medical Record Number: Give the unique patient number assigned to the infant in the hospital, doctor's office, or local health agency. #### o. Sex: If the infant is a boy mark $(\underline{X})$ 1. Male. If the infant is a girl mark $(\underline{X})$ 2. Female. #### p. Race: Place a mark next to the category which best reflects the race of the infant (\_) 1. White, (\_) 2. Black, (\_) 3. Asian, (\_) 4. American Indian, or (\_) 5. Other. ### q. Ethnicity: Place a mark next to the category which best reflects the ethnicity of the infant (\_) 1. Hispanic, or (\_) 2. Nonhispanic. #### r. Status of the infant at time of collection: **Transfused:** If the infant was not transfused mark $(\underline{X})$ No. If the infant was transfused, in utero or after delivery, mark $(\underline{X})$ Yes and then enter the *last date* of transfusion (MM / DD / YY) prior to the specimen being collected. The transfusion information must be recorded accurately so that the hemoglobinopathy, galactosemia, and other test results are accurate. (NOTE, see Transfusion Update Memo, page IV-33) Current Weight: \*NOTE\* Give the weight of the infant at the time the specimen was collected. The current weight of the infant must be recorded accurately so the CAH test results are accurate. The weight must be recorded in grams. See Chart IV - 2 POUNDS AND OUNCES TO GRAMS CONVERSION. | Gestation | nal age | |-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------| | Feeding: | Place a mark next to the method by which the infant is currently being fed (_) 1. Breast, (_) 2. Soy, (_) 3. Intra Venous, (_) 4 Lactose, (_) 5. Other. | ## 2. Physician or Provider Information The report will be mailed to the Physician or Provider listed here. The report will also be mailed to the hospital of collection. #### a. Phone: Legibly print the area code and phone number of the physician or health care provider to be contacted if there is an abnormal test result. #### b. Spec. Collected By: Legibly print the name of the individual collecting the specimen. #### c. Name: Legibly print the first and last name of the physician or heath care provider. #### d. Address, City, State, and Zip Code: Legibly print the complete street address, city, state, and zip code + 4 of the physician or health care provider. #### 3. Mother's Information **Adoption:** If a newborn has been adopted please write "ADOPTION CASE" on the form and put either the adoptive parents or the adoption agency's information in the spaces under Mother's Information. If a repeat specimen is required, letters will be sent to the mother listed on the form until the Newborn Screening lab receives a repeat specimen. ### a. Mother's Current Last Name: Legibly print the mother's legal last name. #### b. First Name: Legibly print the mother's legal first name. #### c. Age: Legibly print the age of the mother at the time of the infant's birth. #### d. Address, City, State, Zip Code: Legibly print the mother's complete address where she is currently living including the city, state, and zip code + 4. If the mother's residence is not in the USA, name the country. #### e. Phone Number: Legibly print the area code and home phone number where the infant's mother can be contacted. If the mother does not have a phone, give the area code and phone number of a relative or neighbor who could easily contact the mother. #### f. TennCare: If the mother has TennCare, mark $(\underline{X})$ Yes. If the mother has any other type of insurance mark $(\underline{X})$ No. #### g. Mother's Social Security Number: Legibly print the mother's social security number. ## h. County of Residence: Legibly print the two-digit code that corresponds to the county in which the mother resides. (See Page IV - 24 for the COUNTY CODE LIST FOR TENNESSEE.) #### 4. Hearing Screen Note: If you are only reporting hearing screens, **do not** use the newborn screening forms. Contact Jacque Cundall at 615-262-6160 for instructions regarding the correct method to report and for additional questions regarding the hearing screens. Hospitals that provide newborn hearing screening utilizing the physiologic methods of ABR and/or OAE are requested to complete the Hearing Screen portion of the form. If your hospital does not provide newborn hearing screening, leave the spaces blank. Place a mark next to \_ABR if the infant was tested by the Auditory Brainstem Response (ABR) or Automated Auditory Brainstem Response (AABR) method. Place a mark next to \_OAE if the infant was tested by the Otoacoustic Emissions (OAE) using the Distortion Product Otoacoustic Emissions (DPOAE) or the Transient Evoked Otoacoustic Emissions (TEOAE) method. If both methods were used, mark the method administered prior to discharge and the results. Ear Screened: Place a mark next to \_R Ear if the right ear was screened. Place a mark next to \_L Ear if the left ear was screened. Mark both spaces if both ears were screened. Pass is the term used for a test that indicates the hearing is within normal limits. If the infant passed the test, place a mark next to \_Pass. Refer is the term used for referral of infants for further evaluation. If the infant needs to be referred, place a mark next to Refer. # 5. Date Rec'd/Lab No (White area at bottom of form) # **DO NOT WRITE IN THIS AREA** The laboratory will record the date and assign a specimen number to the specimen when it is received at the laboratory. ## D. Filter Paper Collection Procedure #### PRECAUTIONS: Improper storage of the collection forms can result in the filter paper being altered by the absorption of ambient moisture in the atmosphere, or by compressing the filter paper if they are stacked on top of each other. Store the forms on their side in a cool, clean, dry place. Touching the filter paper, either before or after collection, with gloved or ungloved hands or substances such as powder, hand lotion, feeding formulas, or other materials can alter the filter paper and also the test results. Use of highlighters on the filter paper or wearing strong perfumes may also interfere with testing procedures. Verify the patient information on the specimen collection form with the infant's identification band, and appropriate chart records before sticking the infant. Check the expiration date of the form. If it has expired do not use it. Appropriate biohazard precautions should be used. Wear powder free gloves and change gloves between infants. Never reuse lancets; place them in a puncture proof sharps container after use. Place biohazardous material in appropriate containers. 1. Select the puncture site on the heel. The shaded areas on the diagram indicate the preferred and least hazardous puncture sites. Draw an imaginary line between the fourth and fifth toes that runs parallel to the lateral aspect of the heel or a line running from the great toe that runs parallel to the medial aspect of the heel. - 2. Warming the heel with a warm (Temperature not to exceed 42 °C) wet towel or diaper or a commercially available heel warmer for not more that 3 minutes along with positioning the leg lower than the heart may dilate the blood vessels and therefore increase blood flow. - **3.** Disinfect the skin with 70% isopropyl alcohol and allow it to air dry. Vigorous rubbing may also stimulate blood flow to the area. - **4**. Puncture the skin with one continuous motion using a sterile automated lancet. On a full term infant the depth of the puncture should not exceed 2.0 mm. On premature or small infants the puncture should be less than 2.0 mm. Lancets with tips longer than 2.5 mm may cause excessive tissue damage, bone damage, or long term problems with walking. - 5. Wipe away and discard the first drop of blood since it may be contaminated by alcohol or tissue fluid. - **6.** Allow the second drop (approximately 75-100 $\mu$ l) to form by the spontaneous free flow of blood. - 7. Touch the filter paper to the drop of blood as close to the center of the circle as possible. Allow the blood spot to expand within the circle and soak through to the other side. Turn the card over to make sure that the blood did soak through completely. DO NOT press or touch the filter paper to the puncture site. - **a.** Apply blood to only one side of the filter paper. It does not matter which side, however, the blood must soak through from one side to the other. - **b.** It is essential that only one drop of blood be used to fill a circle. If the circle cannot be filled with only one drop, go on to the next circle. Do not apply two drops to the same circle. - c. It is permissible for the blood to go outside the circles lines, but do not allow it to overlap on blood in an adjacent circle. Overfilling of the circle can cause supersaturation. - **d.** Do not use capillary tubes or syringes to fill circles. Such devices may alter the filter paper by scratching it, cause supersaturation, or blood clots. - e. Recollect the sample if tiny blood clots appear on the specimen or if any fluid or substance contaminates the specimen. - **8.** Once the blood collection is completed, hold the infant's foot above the heart level and press a sterile gauze to the puncture site until the bleeding has stopped. Adhesive bandages are not recommended. - 9. Air dry the blood specimen horizontally at room temperature away from heat or direct sunlight for at least 3 hours. Do not allow the blood spots to touch any surface. Do not close the fold-over-paper protective flap for at least 3 hours and the specimen is completely dry. # IV. Shipment of Specimens After the specimen has had time to dry for at least 3 hours, close the protective paper flap over the top of the blood spots. DO NOT tape the flap closed or fold the form. The biohazard label should be placed on the outside of the flap of the form Place the form in a paper envelope labeled "Dried Clinical Specimen".. If you are sending more that one form, rotate the forms 180° so that the blood spots are not stacked directly over one another but are alternated. DO NOT place the forms in any form of a plastic sealed bag. This includes poly bags, ziplock bags, plasticene envelopes, or plastic shipping bags. Mail or transport the specimen to the Tennessee Department of Health's Laboratory in Nashville within 24 hours of collection. # If the specimens are going to be If the specimens are going to be mailed delivered by Courier, FedEx, or UPS: **United States Postal Service Address:** Newborn Screening Tennessee Department of Health Laboratory Services P. O. Box 305130 Nashville, TN 37230-5130 Newborn Screening Tennessee Department of Health **Laboratory Services** 630 Hart Lane Nashville, TN 37216-2006 The U. S. Postal Service address is what appears on the back of the yellow fold-over flap. If you have your specimens sent by FedEx, UPS or another delivery company you must use the address on the right above. # V. Reporting Procedure and Interpretation The results of all specimens are reported to the hospital that collected the specimen and the physician or provider listed on the form. If you need a copy of a Newborn Screening Report and your hospital or physician was not listed on the original form, you will need to submit a Release of Records request form signed by the legal parent or quardian. See Page IV - 26 for the REOUEST FOR RELEASE OF RECORDS FORM. The laboratory reports all positive, or suspected positive, results to Maternal and Child Health, generally within 1 to 2 working days after the specimen is received in the laboratory. Women's Health and Geneticsthen notifies the provider by telephone to initiate treatment of the patient, confirmation testing, and follow-up of the patient. The written report is mailed within 7 to 10 working days after receipt of the specimen. Written reports of normal specimens are mailed within 7 to 10 working days after receipt in the laboratory. All unsatisfactory specimens are tested, even though the integrity of the specimen is in question. If a positive, or suspected positive, is found, results are reported to Maternal and Child Health, so that the provider can be notified and treatment can be initiated. **However**, all unsatisfactory specimens are reported as unsatisfactory and must be repeated. # **Reference Ranges** Cut-offs points are established through population-based studies. These values may change over time. # Phenylketonuria (PKU) < 4.0 mg/dl Within Normal Limits 4.0 - 5.9 mg/dl Borderline 6.0 mg/dl or greater Positive #### Galactosemia (GAL) Positive Enzyme and a Total Gal < 15.0 mg/dl Within Normal Limits Positive Enzyme and a Total Gal $\geq$ 15.0 – 19.9 mg/dl Borderline Positive Enzyme and a Total Gal 20.0 mg/dl or greater Abnormal Low Enzyme and a Total Gal $\geq$ 7.0 - < 15.0 mg/dl BorLow Low Enzyme and a Total Gal $\geq$ 15.0 mg/dl AbLow Absent Enzyme and a Total Gal > 5 mg/dl AbNeg It is assumed that the infant has had a lactose feeding and has not been transfused unless otherwise indicated on the Newborn Screening Collection Form. # Congenital Hypothyroidism (TSH) #### For infants 1 day through 7 days < 33 $\mu$ U/ml serum Within Normal Limits $33 - 55 \mu U/ml$ serum Borderline > 55 $\mu$ U/ml serum Positive ## For infants 8 days through 6 months of age < 13 µU/ml serum Within Normal Limits ≥ 13 µU/ml serum Positive # For infants < 24 hours of age < 33 μU/ml serum Within Normal Limits but MUST REPEAT FILTER TEST $\geq$ 33 $\mu$ U/ml serum Inconclusive Results MUST REPEAT FILTER TEST #### Hemoglobinopathy FA is a normal hemoglobin pattern for a young infant AF is a normal hemoglobin pattern for an old infant The result is reported as Within Normal Limits as long as no abnormal bands are detected. It is assumed that the infant has not been transfused unless otherwise indicated on the Newborn Screening Collection Form. #### Congenital Adrenal Hyperplasia (CAH) Birth Weight <1250 grams <135 ng/mL 1251-1750 grams <90 ng/mL 1751-2245 grams <65 ng/mL >2250 grams <50 ng/mL #### **Biotinidase Deficiency** ≥ 11 ERU Within Normal Limits ≥ 5 and ≤10 ERU Partial Deficiency < 5 ERU Deficient | Metabolites | Normal Values | Disorder(s) Related | |------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Amino Acid Disorders | | | | Citrulline | Cit < 40 μmol/L | Argininosuccinate Lyase Deficiency(Argininosuccinic Aciduria) Citrullinemia (Arginosuccinate Synthetase Deficiency) | | Methionine (non-derivitized) | Met < 41 μmol/L | Homocystinuria or variant forms of Hypermethioninemia | | Phenylalanine | Phe < 130 μmol/L | Phenylketonuria Hyperphenylalaninemia or other related disorders | | Phe/Tyr Ratio | Phe/Tyr < 2.0 μmol/L | Phenylketonuria Hyperphenylalaninemia or other related disorders | | Tyrosine | Tyr < 320 μmol/L | Transient Tyrosinemia Tyrosinemia Types I, II and III | | Valine | Val < 325 μmol/L | Maple Syrup Urine Disease | | Leucine | Leu < 375 μmol/L | Maple Syrup Urine Disease | | Organic Acid Disorders | · | | | C3 | C3 < 6.86 μmol/L | Propionic Acidemia Methylmalonic Acidemia (MMA) Methylmalonic Acidemia w/ B12 defect and Homocystinuria Multiple CoA Carboxylase Deficiency | | C4 | C4 < 0.92 µmol/L | Isobutyryl CoA Dehydrogenase Deficiency (IBCD) | | C4-DC | C4-DC <0.64 μmol/L | Methylmalonic Acidemia (MMA) Methylmalonic Acidemia w/ B12 defect and Homocystinuria | | C5 | C5 < 0.59 μmol/L | Isovaleric Acidemia (IVA) 2 Methylbutyryl CoA Dehydrogenase Deficiency (2MBCD) 2 Methyl 3 Hydroxybutyryl CoA Dehydrogenase Deficiency (2MBDH) | | C5:1 | C5:1 <0.05 μmol/L | 2 Methyl 3 Hydroxybutyryl CoA Dehydrogenase Deficiency (2MBDH) | | C5-OH | C5-OH <0.43 μmol/L | Multiple CoA Carboxylase Deficiency 2 Methyl 3 Hydroxybutyryl CoA Dehydrogenase Deficiency (2MBDH) 3 Hydroxy 3 Methylglutaryl CoA Lyase Deficiency (HMG) 3 Methyl Crotonyl CoA Carboxylase Deficiency (3 MCC) 3 Methylglutaconyl CoA Hydratase Deficiency (3MGA) | | C5-DC | C5-DC <0.14 µmol/L | Glutaric Acidemia Type I (GAI) | | Fatty Acid Disorders | | | | C4 | C4 < 0.92 μmol/L | Short Chain AcylCoA Dehydrogenase Deficiency (SCAD) Multiple AcylCoA Dehydrogenase Deficiency (MADD or GAII) | | C5 | C5<0.51 μmol/L | Multiple AcylCoA Dehydrogenase Deficiency (MADD or GAII) | | C5:1 | C5:1 <0.05 µmol/L | Mitochondrial Acetoacetyl CoA Thiolase (Ketothiolase) Deficiency | | C5-OH | C5-OH <0.43 μmol/L | Mitochondrial Acetoacetyl CoA Thiolase (Ketothiolase) Deficiency | | C5-DC | C5-DC <0.14 μmol/L | Multiple AcylCoA Dehydrogenase Deficiency (MADD or GAII) | | C6 | C6< 0.16 μmol/L | Medium Chain AcylCoA Dehydrogenase Deficiency (MCAD) | | C8 | C8< 0.30 μmol/L | Medium Chain AcylCoA Dehydrogenase Deficiency (MCAD) | | **C8/C2 | C8/C2 < .10 μmol/L | Medium Chain AcylCoA Dehydrogenase Deficiency (MCAD) | | C10 | C10 <0.31 µmol/L | Multiple AcylCoA Dehydrogenase Deficiency (MADD or GAII) | | C10:1 | C10:1 <0.31 µmol/L | Medium Chain AcylCoA Dehydrogenase Deficiency (MCAD) | | ***C10:1/C2 | C10:1/C2 < 0.09 µmol/L | Medium Chain AcylCoA Dehydrogenase Deficiency (MCAD) | | C14 | C14< 0.63 µmol/L | Very Long Chain AcylCoA Dehydrogenase Deficiency (VLCAD) | | C14:1 | C14:1 < 0.60 µmol/L | Very Long Chain AcylCoA Dehydrogenase Deficiency (VLCAD) Multiple AcylCoA Dehydrogenase Deficiency (MADD or GAII) | | C14-OH | C14 OH + 0.07mol/l | Long Chain Hydroxyl AcylCoA Dehydrogenase Deficiency (LCHAD) | | C16 | C14-OH < 0.07 μmol/L<br>C16< 7.0 μmol/L | Multiple AcylCoA Dehydrogenase Deficiency (LCHAD) Wery Long Chain AcylCoA Dehydrogenase Deficiency (VLCAD) Long Chain Hydroxyl AcylCoA Dehydrogenase Deficiency (VLCAD) Long Chain Hydroxyl AcylCoA Dehydrogenase Deficiency (LCHAD) Trifunctional Protein Deficiency Carnitine/Acylcarnitine Translocase Deficiency (CACTD) Carnitine Palmitoyl Transferase Deficiency Type II | | C16-OH | C16-OH < 0.06μmol/L | Long Chain Hydroxyl AcylCoA Dehydrogenase Deficiency (LCHAD) Trifunctional Protein Deficiency | | C18 | C18 < 1.91 μmol/L | Carnitine /Acylcarnitine Translocase Deficiency(CACTD) Carnitine Palmitoyl Transferase Deficiency Type II Long Chain Hydroxyl AcylCoA Dehydrogenase Deficiency (LCHAD) Trifunctional Protein Deficiency Very Long Chain AcylCoA Dehydrogenase Deficiency (VLCAD) | | C18:1 | C18:1 < 2.40 μmol/L | Carnitine /Acylcarnitine Translocase Deficiency(CACTD) Carnitine Palmitoyl Transferase Deficiency Type II | | C18:2 | C18:2 <1.34 µmol/L | Carnitine /Acylcarnitine Translocase Deficiency(CACTD) Carnitine Palmitoyl Transferase Deficiency Type II | # VII. Specimen Criteria Newborn Screening Laboratory personnel closely examine each specimen that arrives in the lab for quality and quantity before testing begins. Two technologists look at all unsatisfactory specimens and then a final check is made by the supervisor. The collection hospital, provider, and the infant's mother are notified by mail that a repeat specimen needs to be obtained. Unsatisfactory reports are usually mailed within 2 to 4 working days after the specimen is received. The specimens have to be recollected and sent to the laboratory which can be a costly delay if the infant is diagnosed with a genetic disorder. A satisfactory blood drop is one single drop of whole blood applied evenly and allowed to soak through the filter card and can be seen clearly with no white showing through on the other side. The spots must be large enough to allow FIVE 1/8-inch discs to be punched out with no white areas showing. See Chart IV - 1 COMMON CAUSES OF UNSATISFACTORY NEWBORN SCREENING SPECIMENS for unsatisfactory specimen conditions and their possible causes. Page IV- 18 Chart IV - 1 Common Causes of Unsatisfactory Newborn Screening Specimens | Unsatisfactory Specimen Conditions | POSSIBLE CAUSE | |------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Nonuniform | Applying many small drops of blood to each circle. Applying blood with any type of capillary tube. Touching the blood drops when they are wet. Uneven soaking through the filter card is cased by exposure to moisture, glove powder touching the filter card area before collection or the use of hand creams or lotions. Contaminated surfaces with any of the above contaminants may also cause nonuniform absorption of the blood. | | Filter Paper Expired | Specimen was collected on filter paper that was expired. | | > 6 months | The infant was greater than 6 months of age at the time the specimen was collected. | | < 24 hours | The specimen was collected before the infant was 24 hours of age. | | > 5 days | The specimen was received in the laboratory greater than 5 days after the date of collection. This may be a delay in the U.S. Postal service or a delay in the hospital mail service. Mail specimens within 24 hours of collection. | | Contaminated | Specimen was contaminated in some way with something like alcohol, water, formula, urine, or hand lotion for example. | | Inaccurate Information | Information on the form was inaccurate or incorrect. This most often occurs when the date or time of collection is written on the form as occurring before the date and time of birth. | | Incomplete Information | All blanks on the form were not filled out completely. | | Quantity Not Sufficient (QNS) | The drops of blood are too small. This can be caused by improper use of the lancet or dropping blood from a capillary tube device. | | Supersaturated | The drops of blood are too large. The drops of blood overlap or touch one another. The filter card is pressed against the puncture site. The blood is dropped in very large drops from a capillary tube. | | Cells & Serum Separated | The usual cause is squeezing the heel during the specimen collection. It can also be caused by waiting too long for the drop of blood to form or by clotted blood. When applying blood with a capillary tube device, if the blood is not well mixed it may appear on the filter card as clotted blood. | | Clotted Specimen | Clotted specimens are due to improper puncture, application with a capillary tube device, and waiting too long for a drop of blood to form allowing the blood to clot. | | Altered Card | Use of a capillary tube or syringe to apply the blood can scratch the filter card when wet, or rubbing the spot when it is still wet. It can also be caused be pressing the heel to the filter card during the collection process. | | Both Sides | This is from applying blood to both sides of the filter card. It is easily recognized in the lab by holding the specimen up to a light and looking at both sides for shadows. | | No Blood | The form was received but there was no blood collected on the filter paper. | |----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Heated | Specimen appears much darker than usual and appears to have been heated. Caused by too long in transit especially during the summer. Heat and humidity can affect test results. Also caused by heating a specimen to dry it. | | QNSCOM | Insufficient blood to complete testing. Quantity not sufficient for test completion. | | Poly Bag | Specimen received in a sealed poly bag, plastic zip lock bag, plasticene envelope, or plastic shipping bag | | Detached | Blood spot filter paper detached from information portion of the card. | | Accident | Laboratory Accident | #### VIII. Confirmation Procedures The laboratory reports a presumptive positive result to Women's Health and Genetics (WHG) as soon as it is determined, generally within 24 to 48 hours after the specimen is received. WHG notifies the provider listed on the form by telephone and fax to initiate confirmatory testing, follow-up, and treatment of the infant. WHG also notifies the appropriate endocrinologist and Genetic Center or Sickle Cell Center. As soon as abnormal results are determined, WHG faxes or mails, by certified letter, presumptive positive results to the provider. Final results are mailed when all other test are completed, generally within 7 to 10 days after the specimen is received. **PKU Confirmation:** Those infants who have an abnormal phenylalanine level on newborn screening require confirmatory testing for phenylketonuria (PKU). These infants should be referred immediately to the nearest genetic center as recommended by the Women's Health and Genetics (WHG) Follow-up Program. The genetic center will provide information regarding follow-up procedures for blood collection and mailing. Infants who have a borderline phenylalanine level are required to have follow-up. A repeat filter-paper blood specimen should be submitted to the TDH Laboratory. **Galactosemia Confirmation:** Infants who require confirmatory diagnostic testing for galactosemia should be referred immediately to the nearest genetic center for instructions regarding blood specimen collection and mailing. The WHG Follow-up Program will provide information about the nearest genetic center. Infants with a borderline result for galactosemia are required to have a repeat filter-paper blood specimen sent as soon as possible to the TDH Laboratory. Infants who received a transfusion before the newborn screening test need to have a repeat filter-paper blood specimen collected ten days following the last date of transfusion and within three days of lactose feedings. Repeat galactosemia screening is done again three months after the transfusion. **Hemoglobinopathy Confirmation:** All infants either transfused or whose initial screen identified an abnormal hemoglobin trait or disease must have a hemoglobin confirmation performed by the Meharry Sickle Cell Center. All supplies, including mailers, collection devices, and forms can be ordered from: Comprehensive Sickle Cell Center Meharry Medical College Nashville, TN 37208 Telephone: (615) 327-6763 **Congenital Hypothyroidism Confirmation:** WHG will notify the provider of infants who require confirmatory diagnostic thyroid testing. WHG recommends serum thyroid testing for confirmatory testing. This may be handled by the primary care physician or an endocrinologist. **Congenital Adrenal Hyperplasia (CAH) Confirmation:** Infants who require confirmatory diagnostic testing for CAH should be referred immediately to the nearest pediatric endocrinologist for instructions regarding blood specimen collection and follow-up. **Biotinidase Deficiency Confirmation:** Those infants who have a deficient Biotinidase level on newborn screening require confirmatory testing for Biotinidase. These infants should be referred immediately to the nearest genetic center as recommended by the Women's Health and Genetics(WHG) Follow-up Program. The genetic center will provide information regarding follow-up procedures for blood collection and mailing. Infants who have a partial deficiency biotinidase level are required to have follow-up. A repeat filter-paper blood specimen should be submitted to the TDH Laboratory. **Amino Acid Disorder Confirmation:** Infants who have an elevated amino acid level(s) are required to have follow-up. The genetic center will provide information regarding follow-up procedures for blood collection and mailing. **Organic Acid Disease Disorder Confirmation:** Infants who have elevated organic acid level(s) are required to have follow-up. The genetic center will provide information regarding follow-up procedures for blood collection and mailing. **Fatty Acid Oxidation Disorders Confirmation**: Infants who have an elevated Fatty acid level(s) are required to have follow-up. The genetic center will provide information regarding follow-up procedures for blood collection and mailing. #### IX. Material for Parents The state provides pamphlets for parents to educate them about the Newborn Screening Test. These yellow pamphlets can be obtained from Women's Health and Genetics(WHG) by calling (615) 262-6304. The pamphlet answers questions most often asked and explains briefly the 5 disorders and how the testing is done. There is also a green pamphlet "Your Baby Needs to be Rescreened" which is require by state law to be given to every parent whose infant leaves the hospital before 24 hours of age. You are still required to do a newborn screen on this infant before he/she leaves. On newborn screenings done before the infant is 24 hours old, only the Hemoglobin test is accurate, the other test will have to be repeated within 2 weeks. The green pamphlet explains this to the parents and also gives an overview of the 4 disorders the infant will need to be retested for. # X. Infant Discharged before Specimen Was Obtained When the nursery or lab forgets to get a specimen on an infant before he/she leaves, we ask that you still send in a newborn screening collection form completely filled in and write, "LEFT BEFORE OBTAINED" on the form. You are responsible for notifying the parent and the physician of the need for the test. Newborn Screening will also contact the physician and make sure the infant is screened. When collection forms for these infants are not sent in, we are unaware that the infant exists. ## XI. Refusal to Have Newborn Screening Performed When a parent refuses the newborn screening test, we ask that you do send in a newborn screening collection form completely filled in and write "REFUSED" on the form, and we will follow up. If a parent refuses the test due to religious reasons, please fill out the NEWBORN SCREENING REFUSAL FORM (See Page IV - 25), have it notarized, and fax it to Women's Health and Genetics at (615) 262-6458. ### XII. Death Notice If you are aware of an infant that has expired, please fax us the child's name, date of birth, mothers name, and the date the infant expired. If a specimen needs to be repeated we will continue to send letters to the mother until we receive a specimen. In this case, we do NOT want to notify the parent. Maternal and Child Health's fax number is (615) 262-6458. # XIII. Specimen Collection for the Hemoglobin Electrophoresis Procedure from Meharry Sickle Cell Center Proper collection and handling of specimens are essential when sending samples to the Meharry Sickle Cell Center. The following steps must be adhered to so specimens are not damaged in transit and comply with Occupational Safety and Health Administration (OSHA) standards and postal regulations. If these directions are not followed, your samples may not reach us. Your cooperation in this matter is appreciated. **Supplies Needed:** Request form (Adult/Children), Microvette Tube EDTA, Plastic Biohazard Bags, Styrofoam Mailing Boxes, and Packing Tape. Each Microvette tube contains enough EDTA to anticoagulant up to 200 $\mu$ l of blood. **Note special instructions in tube package**. - 1. Label the Microvette tube with the patient's name (label not included). - 2. Perform a heel stick using good laboratory practice and following the instructions of the lancet device manufacturer. - 3. Wipe off the first drop of blood. Then touch the capillary tip of the Microvette Tube to the droplet of blood as it appears at the incision. Excessive pressure or squeezing on puncture area must be avoided. This could lead to premature coagulation in the capillary. - 4. After the blood has been taken, the capillary unit is removed and properly discarded and the sample container is closed with the attached stopper. - 5. Properly mix the blood with the EDTA. Hold the stoppered collection Microvette Tube between thumb and index finger and invert several times. - 6. Complete the laboratory request form with all information. Include the address to send results. Fold the laboratory request form and place it in the unsealed pocked of a biohazard bag. - 7. Place the sealed Microvette Tube in the ziplock pocket of the biohazard bag and place into a Styrofoam mailing box. - 8. Place the Styrofoam box in the mailing sleeve and seal both ends. Please put the return address on the mailing box. - 9. Mail appropriately packaged sample(s) to : ATTN: Laboratory Supervisor Comprehensive Sickle Cell Center Meharry Medical College 1005 D. B. Todd Boulevard Nashville, Tennessee 37208 Phone (615) 327-6763 Fax (615) 327-6008 Page IV- 25 # Newborn Screening Additional Information, Charts and Forms # Chart IV - 2 Pounds and Ounces to Grams Conversion 1 Kilo = 1000 grams Example: To obtain grams equivalent to 5 pounds, 8 ounces, read "5" on the top scale, and read "8" on the side scale; it is equivalent to 2495 grams. | | | | | | | | | POU | NDS | | | | | | | | |--------|----|-----|-----|------|------|------|------|------|------|------|------|------|------|------|------|------| | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | | 0 | 0 | 454 | 907 | 1361 | 1814 | 2268 | 2722 | 3175 | 3629 | 4082 | 4536 | 4990 | 5443 | 5897 | 6350 | | | 1 | 25 | 482 | 936 | 1389 | 1843 | 2295 | 2750 | 3203 | 3657 | 4111 | 4584 | 5018 | 5471 | 5925 | 6379 | | | 2 | 57 | 610 | 964 | 1417 | 1871 | 2325 | 2778 | 3232 | 3686 | 4139 | 4593 | 5046 | 5500 | 5953 | 6407 | | | 3 | 85 | 639 | 992 | 1448 | 1899 | 2353 | 2807 | 3260 | 3714 | 4157 | 4621 | 5075 | 5528 | 5982 | 6435 | | | | | | | | | | | | | | | | | | | | | 4 | 113 | 687 | 1021 | 1474 | 1928 | 2381 | 2835 | 3289 | 3742 | 4196 | 4649 | 5103 | 5557 | 6010 | 6464 | | 0 | 5 | 142 | 695 | 1049 | 1503 | 1958 | 2410 | 2863 | 3317 | 3770 | 4224 | 4675 | 5131 | 5585 | 6038 | 6492 | | U | 6 | 170 | 625 | 1077 | 1531 | 1964 | 2438 | 2882 | 3345 | 3799 | 4252 | 4706 | 5168 | 5613 | 6067 | 6520 | | N | 7 | 198 | 652 | 1108 | 1559 | 2013 | 2466 | 2920 | 3374 | 3827 | 4281 | 4734 | 5188 | 5642 | 6095 | 6549 | | C | | | | | | | | | | | | | | | | | | E<br>S | 8 | 227 | 680 | 1134 | 1588 | 2041 | 2495 | 2948 | 3402 | 3856 | 4308 | 4763 | 5210 | 5670 | 6123 | 6577 | | 3 | 9 | 255 | 709 | 1162 | 1616 | 2070 | 2523 | 2977 | 3430 | 3884 | 4337 | 4791 | 5245 | 5698 | 6152 | 6605 | | | 10 | 283 | 737 | 1191 | 1644 | 2098 | 2551 | 3005 | 3459 | 3912 | 4366 | 4819 | 5273 | 5727 | 6180 | 6631 | | | 11 | 312 | 765 | 1210 | 1673 | 2126 | 2580 | 3033 | 3487 | 3941 | 4394 | 4848 | 5301 | 5765 | 6209 | 6662 | | | | | | | | | | | | | | | | | | | | | 12 | 340 | 784 | 1247 | 1701 | 2155 | 2608 | 3062 | 3515 | 3969 | 4423 | 4876 | 5330 | 5783 | 6237 | 6690 | | | 13 | 369 | 822 | 1278 | 1729 | 2183 | 2637 | 3090 | 3544 | 3997 | 4451 | 4904 | 5358 | 5812 | 6265 | 6719 | | | 14 | 397 | 850 | 1304 | 1758 | 2211 | 2665 | 3118 | 3572 | 4026 | 4479 | 4933 | 5366 | 5840 | 6294 | 6747 | | | 15 | 425 | 879 | 1332 | 1786 | 2240 | 2693 | 3147 | 3600 | 4054 | 4506 | 4961 | 5415 | 5868 | 6322 | 6776 | NOTE: 1 pound = 453.59237 grams; 1 ounce = 28.349523 grams; 1000 grams = 1 kilogram. Gram equivalents have been rounded to whole number by adding one when the first decimal place is 5 or greater. Chart IV - 3 Military Time Conversion Chart | CIVILIAN TIME | MILITARY TIME | |---------------------|---------------| | 1:00 AM | 0100 | | 2:00 AM | 0200 | | 3:00 AM | 0300 | | 4:00 AM | 0400 | | 5:00 AM | 0500 | | 6:00 AM | 0600 | | 7:00 AM | 0700 | | 8:00 AM | 0800 | | 9:00 AM | 0900 | | 10:00 AM | 1000 | | 11:00 AM | 1100 | | 12:00 a.m. noon | 1200 | | 1:00 PM | 1300 | | 2:00 PM | 1400 | | 3:00 PM | 1500 | | 4:00 PM | 1600 | | 5:00 PM | 1700 | | 6:00 PM | 1800 | | 7:00 PM | 1900 | | 8:00 PM | 2000 | | 9:00 PM | 2100 | | 10:00 PM | 2200 | | 11:00 PM | 2300 | | 12:00 p.m. midnight | 2400 | An infant born at 12:05 AM or 5 minutes after midnight would be written as 0005 military time. Page IV- 27 Chart IV - 4 TENNESSEE COUNTY CODE LIST | COUNTY | COUNTY NAME | COUNTY | COUNTY NAME | |----------|-------------------|--------|---------------| | 01 | ANDERSON | 49 | LAUDERDALE | | 02 | BEDFORD | 50 | LAWRENCE | | 03 | BENTON | 51 | LEWIS | | 04 | BLEDSOE | 52 | LINCOLN | | 05 | BLOUNT | 53 | LOUDON | | 06 | BRADLEY | 54 | MCMINN | | 07 | CAMPBELL | 55 | MCNAIRY | | 08 | CANNON | 56 | MACON | | 09 | CARROLL | 57 | MASIDON | | 10 | CARTER | 58 | MARION | | 11 | CHEATHAM | 59 | MARSHALL | | 12 | CHESTER | 60 | MAURY | | 13 | CLAIBORNE | 61 | MEIGS | | 14 | CLAY | 62 | MONROE | | 15 | COCKE | 63 | MONTGOMERY | | 16 | COFFEE | 64 | MOORE | | 17 | CROCKETT | 65 | MORGAN | | 18 | CUMBERLAND | 66 | OBION | | 19 | DAVIDSON | 67 | OVERTON | | | | | | | 20<br>21 | DECATUR<br>DEKALB | 68 | PERRY PICKETT | | 21 | DENALB | 69 | PICKETT | | 22 | DICKCON | 70 | DOLK | | 22<br>23 | DICKSON | 70 | POLK | | | DYER | 71 | PUTNAM | | 24 | FAYETTE | | RHEA | | 25 | FENTRESS | 73 | ROAN | | 26 | FRANKLIN | 74 | ROBERTSON | | 27 | GIBSON | 75 | RUTHERFORD | | 28 | GILES | 76 | SCOTT | | 29 | GRAINGER | 77 | SEQUATCHIE | | 30 | GREENE | 78 | SEVIER | | 31 | GRUNDY | 79 | SHELBY | | 32 | HAMBLEN | 80 | SMITH | | 33 | HAMILTON | 81 | STEWART | | 34 | HANCOCK | 82 | SULLIVAN | | 35 | HARDEMAN | 83 | SUMNER | | 36 | HARDIN | 84 | TIPTON | | 37 | HAWKINS | 85 | TROUSDALE | | 38 | HAYWOOD | 86 | UNICOI | | 39 | HENDERSON | 87 | UNION | | 40 | HENRY | 88 | VAN BUREN | | 41 | HICKMAN | 89 | WARREN | | 42 | HOUSTON | 90 | WASHINGTON | | 43 | HUMPHREYS | 91 | WAYNE | | 44 | JACKSON | 92 | WEAKLY | | 45 | JEFFERSON | 93 | WHITE | | 46 | JOHNSON | 94 | WILLIAMSON | | 47 | KNOX | 95 | WILSON | | 48 | LAKE | | | | Patient's Name | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Mother's Name | | Date of Birth | | Hospital of Birth | | | | NEWBORN SCREENING REFUSAL | | have been informed of the need for newborn screening which includes testing for phenylketonuria (PKU), congenital hypothyroidism, congenital adrenal hyperplasia, galactosemia, hemoglobinopathies, and other metabolic/genetic defects that would result in mental retardation or physical dysfunction as determined by the nealth department. | | I have been informed that state law requires this testing and that violation of the law is a misdemeanor. | | Nonetheless, I refuse these tests at this time for my newborn baby because such test conflicts with my religious tenets and practices. | | Under penalty of perjury, I affirm such refusal because of a conflict with my religious tenets and practices. | | IN WITNESS WHEREOF, the undersigned has signed this form this day of, 2 | | | | | | · | | Signature | | STATE OF TENNESSEE | | COUNTY OF | | | | On this, 2, before me | | personally appeared, to me known (or proved to me on the basis of satisfactory evidence) to be the person described in and who executed the foregoing instrument, and acknowledged that she executed the same as her own free act and deed. | | | | Notary Public | | My Commission Expires: | | -, | | | | DEFLICAL | # REQUEST FOR RELEASE OF RECORDS | Baby's Last Name | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------| | Baby's First Name | | | Date of Birth | | | Mother's Last Name | | | Mother's First Name | | | Mother's Social Security Number | | | Hospital of Birth or Collection | | | Any other previous last names used by the mother or the baby: | | | Name of Contact person in provider's office: | | | Direct Phone number of Contact Person: _() | | | In the event we have trouble locating the baby listed above we will attempt to oprovider for additional information. | contact the | | I, the legal parent or guardian above do hereby give consent for the State of Tennessee Newborn Screen release results to the Physician or Group Listed here | of the baby listed<br>ing Laboratory to | | Parent's Signature | | | Witness's Signature | | # **MEMORANDUM** **TO:** Submitters/Providers of Newborn Screening Specimens **FROM:** Michael W. Kimberly, Dr PH, MPH, HCLD **DATE:** January 19, 2005 SUBJECT: Newborn Screening Update: Change in accepting specimens from transfused infants Newborn Screening can be affected by transfusion of a newborn prior to collection of the blood sample. Laboratory Services' transfusion protocol was to request a repeat filter paper, if the date of collection for the blood specimen was less than four days post transfusion for TSH and 17 OHP and less than ten days post transfusion for Tandem Mass Spectrometry, Galactose and Biotinidase. Hemoglobinopathies required recollection three months post transfusion. On January 13, 2005 the State Laboratory changed this protocol based on the recommendation of the Genetic Advisory Committee. We will require a recollection of the filter paper, if the date of collection is less than four days post-transfusion for all tests except Hemoglobinopathies. Hemoglobinopathies will remain the same at three months. If you should have any questions, please call the Newborn Screening Laboratory at 615-262-6352 or the Follow-up Program at 615-262-6304. Page IV- 33 # TENNESSEE DEPARTMENT OF HEALTH - LABORATORY SERVICES REQUISITION FOR LABORATORY SUPPLIES | SEND TO | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------|------| | ADDRESS | | | | | | | | | | SIGNATURE P | PHONE | | | | *** SUBMIT THIS FORM TO THE LABORATORY | | IG. *** | | | Quantity | | | | | COMPLETE KITS (Includes Form, Mailing Label, and Mailer) | REQUEST FORMS | | | | TB smear and culture | Miscellaneous Examination | PH-1573 | | | Intestinal Parasites (O&P) | Water Bacteriology Analysis | PH-1575 | | | Pinworm | Mycobacteriology Smear and | l Culture | | | Pertussis | | PH-1577 | | | Water Bacteriology | Syphilis Serology | PH-1578 | | | Foodborne Outbreak Stool Collection Kit | Virology | PH-1579 | | | INDIVIDUAL ITEMS | Req. Laboratory Supplies | PH-1580A | | | (Includes All Supplies Except Forms and Mailers) | Newborn Screening | PH-1582 | | | Cary-Blair for Enteric/Bacterial Transport | (Order From Nashvi | ille Only) | | | Chlamydia/Gonorrhea Female Collection Kit | Gonococcus Culture | PH-1583 | | | Chlamydia/Gonorrhea Male Collection Kit | Rabies | PH-1584 | | | Gonorrhea Culture | Group A Streptococcus | PH-1587 | | | Throat Cultures for Group A Strep (TSA) | Immunoserology | PH-1589 | | | Vacutainer Tubes (7ml draw) | Rubella Serology | PH-1917 | | | Viral Transport Media (1.5 ml. / tube) | HIV-1 Serology | PH-3173 | | | Diphtheria (Pai) (Order From Nashville Only) | Chlamydia and Gonorrhea D | etection | | | Charcoal Agar (For Pertussis Only) | | PH-3179 | | | • | | | • | | MAILING CONTAINERS | MAILING LABELS | | | | Medium (1-3 tubes, single bloods) | GONO-PAK | | | | Large (3-6 tubes, multi-bloods, GC Culture) | MYCO | | | | | Specimen For Microbiologica | l Examination | | | | | PH-0838 | | | SPECIAL NEEDS | | | | | | | | | | | | | | | ORDERING INFORMATION | THREE EASY WAYS TO O | RDER | | | ♦ Please order only what you will use in one month | Mail to: Tennessee Departmenth | rtment of | | | ♦ Please submit order one week in advance of need | Laboratory Servio<br>630 Hart Lane<br>Nashville, Tenne | | | | A. De suma ha alcoale sumination determination | 0801 | | | | Be sure to check expiration dates carefully Please return all incomplete or expired materials. | 2. FAX (615) 262-6393<br>3. Call (615) 262-6322 | | | | <ul> <li>Please return all incomplete or expired materials</li> <li>FOR LABORATORY USE ONLY</li> </ul> | 3. Can (013) 202-0322 | | | | RECEIVED FILLED | INITIAL | SHIPPED | | | AND THE PARTY OF T | S | _ | | | Date | Date | | Date | | PH-1580A | | RDA | | | 1160 REV 8/00 | | | | TDH Directory of Laboratory Services April 2005 Page IV- 35